Blog

Early Detection of Research Trends

This post aims to act like a hub for all the relevant information about my doctoral work. It will be constantly updated with new source and developments. Abstract Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches […]

Read More

Defended my Thesis

On 31st May 2019, I defended my thesis on the “Early Detection of Research Trends”. The exam panel consisted of Dr Pallavi Anand from the Open University as chair, and two external examiners Prof Kalina Bontcheva from the University of Sheffield, and Prof Alun Preece from Cardiff University. Further Link Early Detection of Research Trends Media […]

Read More

New release: CSO Classifier v2.1

We are pleased to announce that we recently created a new release of the CSO Classifier (v2.1), an application for automatically classifying research papers according to the Computer Science Ontology (CSO). Recently, we have been intensively working on improving its scalability, removing all its bottlenecks and making sure it could be run on large corpus. […]

Read More

CSO Classifier

Classifying research papers according to their research topics is an important task to improve their retrievability, assist the creation of smart analytics, and support a variety of approaches for analysing and making sense of the research environment. In this page, we present the CSO Classifier, a new unsupervised approach for automatically classifying research papers according […]

Read More

The World Wide Web turns 30

I have always been passionate about technology. When I bought my first computer (special thanks to my father for funding it), and got it connected to the internet, it soon became part of my life: downloading movies, music, studying, chatting, engaging with different communities, writing a blog, buying and selling stuff. The web gave me […]

Read More

Awesome Scholarly Data Analysis

Awesome Scholarly Data Analysis is a curated collection of resources that can support Scholarly Data analytics. This list ranges from: Datasets, which includes different corpora of papers, citations, authors and others, as well as taxonomies and ontologies of research concepts; Tools for collecting and classifying research papers, information extraction, and visualization; and Venues, Summer Schools, […]

Read More

Computer Science Ontology

The Computer Science Ontology is a large-scale ontology of research areas that was automatically generated using the Klink-2 algorithm [1] on a dataset of about 16 million publications, mainly in the field of Computer Science. In the rest of the paper, we will refer to this corpus as the Rexplore dataset [2]. The current version of CSO […]

Read More

Are citation networks really acyclic?

Simple answer: no. However, before getting into a more detailed answer, allow me to briefly introduce the concept of citation networks, then I will describe why citation networks cannot be considered acyclic anymore. In the scholarly domain, citation networks is an information network in which each node represents a scientific paper and a link between […]

Read More