
Using FFMPEG in C++ with Qt Creator

Angelo Antonio Salatino1

Last revision: 28th Jan. 2013

0.9. Abstract
This paper aims to give some tips that allows programmers to use FFMPEG library in C++ and
to create an own project with Qt Creator. First of all, I want to say sorry about my english, but
this is the correct way to improve it and make more international this wiki. The examples that will
be shown below are completely tested on Ubuntu OS.

Keywords: FFMPEG with C++; Qt Creator

1. Introduction
Nowadays, there are a lot of tools that simplifies the programmer’s life, sometimes this kind of
tools are not compatible together. Two of them are Qt Creator and the FFMPEG library. The first
one is a cross-platform IDE that gives the opportunity to create C++ project with GUI but the
second one is a complete, cross-platform solution to record, convert and stream audio and
video. FFMPEG has been distributed in two ways, a built software (retrievable launching “sudo
apt-get install ffmpeg” on linux systems) and a library format that should be compiled to be used
(http://ffmpeg.org/trac/ffmpeg/wiki/CompilationGuide).
Despite these beautiful words, sometimes is impossible to include the FFMPEG library inside an
own C++ project. In the sections below will be shown how it is possible.
To make an own project with that library it is possibile to use both the two ways, but the first one
is not a good way to proceed, because after downloading it, there is only a built software that
gives less benefits than the library. On the other hand, compiling the library, it gives the
complete access to the function, structures, that make it a better project. The paper is organized
as follow: Section 2 describes how to launch the built software as a system call and Section 3
describes how to use FFMPEG library inside C++ code.

2. FFMPEG as a system call
The built version of FFMPEG can be called by shell with an argument list (see the wiki on the
official web site), so to use this into a C++ code it is necessary to implement a QProcess that
can start a program.
Taking a simple example that is able to extract and save the audio stream from a input video
file, here are the shell call:

1 At the moment is a student of Computer System Engineering at Polytechnic of Bari (BA) Italy. E-mail
address a.salatino@studenti.poliba.it.

http://ffmpeg.org/
http://ffmpeg.org/trac/ffmpeg/wiki/CompilationGuide

ffmpeg -i inputMovie.avi -acodec pcm_s16le outputAudioFile.wav

Inside Qt Creator it is necessary to write these instructions:

 QProcess _FFMPEG;
 QString _process = "ffmpeg";
 QStringList _paramList;

 _paramList << "-i"
 << "inputMovie.avi"
 << "-acodec"
 << "pcm_s16le"
 << "outputAudioFile.wav";

 _FFMPEG.start(_process, _paramList);

 if (!(_FFMPEG.waitForFinished()))
 qDebug() << "Conversion failed:" << _FFMPEG.errorString();
 else
 qDebug() << "Conversion output:" << _FFMPEG.readAll();

The _FFMPEG is an object that can start an external program and communicate with
him. To the start function is necessary to give the name of the process (ffmpeg) and the
argument list (_paramList).

3. FFMPEG inside C++
As it was said above, to use the library function inside a own project is necessary to compile the
library (http://ffmpeg.org/trac/ffmpeg/wiki/CompilationGuide). The FFMPEG library is completely
written in C99, so sometimes is impossible to call some functions into C++ code, because the
compiler gives an undefined reference error when a function from library is called. To walk
around this problem, is necessary to write a wrapper that allows to call that functions. This
wrapper is a header file that contains all the call to the FFMPEG functions. After that into the
C++ code, the wrapper should be called with an extern keyword. Here are some code:

wrapper.h

#ifndef WRAPPER_H_
#define WRAPPER_H_

#include <libavutil/opt.h>
#include <libavcodec/avcodec.h>
//other FFMPEG inclusion

// Your function and structure …

http://ffmpeg.org/trac/ffmpeg/wiki/CompilationGuide

void service (... , ...){ //a generic function
 ...
 }

#endif

main.cpp

#include <QtGui/QApplication>
#include "mainwindow.h"

extern "C"{ //here the call to the wrapper with extern keyword
 #include "wrapper.h"
}

int main(int argc, char *argv[])
{

 ….

 service(... , ...); //calling a function into the wrapper
 QApplication a(argc, argv);
 MainWindow w;
 w.show();
 return a.exec();

}

fooProject.pro

HEADERS += wrapper.h

QMAKE_CXXFLAGS += -D__STDC_CONSTANT_MACROS

LIBS += -pthread
LIBS += -L/usr/local/lib
LIBS += -lavdevice
LIBS += -lavfilter
LIBS += -lpostproc
LIBS += -lavformat
LIBS += -lavcodec
LIBS += -ldl

LIBS += -lXfixes
LIBS += -lXext
LIBS += -lX11
LIBS += -lasound
LIBS += -lSDL
LIBS += -lx264
LIBS += -lvpx
LIBS += -lvorbisenc
LIBS += -lvorbis
LIBS += -ltheoraenc
LIBS += -ltheoradec
LIBS += -logg
LIBS += -lopencore-amrwb
LIBS += -lopencore-amrnb
LIBS += -lmp3lame
LIBS += -lfaac
LIBS += -lz
LIBS += -lrt
LIBS += -lswresample
LIBS += -lswscale
LIBS += -lavutil
LIBS += -lm

In conclusion with this simple trick we are able to use the power of the FFMPEG library inside in
a own project.
I would to say thank you to whoever want to improve this paper.

